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A B S T R A C T

Great gains have been made in providing researchers geo-spatial data that can be combined with population
health data. This development is crucial given concerns over the human health outcomes associated with a
changing climate. Merging population and environmental data remains both conceptually and technically
challenging because of a large range of temporal and spatial scales. Here we propose a framework that addresses
and advances both conceptual and technical aspects of population-environment research. This framework can be
useful for considering how any time or space-based environmental occurrence influences population health
outcomes and can be used to guide different data aggregation strategies. The primary consideration discussed
here is how to properly model the space and time effects of environmental context on individual-level health
outcomes, specifically maternal, child and reproductive health outcomes. The influx of geospatial health data
and highly detailed environmental data, often at daily scales, provide an opportunity for population-environ-
ment researchers to move towards a more theoretically and analytically sound approach for studying environ-
ment and health linkages.

1. Introduction

Environmental data like rainfall or temperature data or drought or
vegetation indices are widely used in the physical sciences to describe
and investigate trends over time and to define and identify extreme
events. These data are often available as daily measures (daily max-
imum temperature, for example) or 5–7 day composite measures (ve-
getation/greenness indices and total rainfall, for example). In terms of
spatial scale, environmental data are increasingly available at spatial
scales of less than 1 m (vegetation) but are also commonly available at
much coarser scales closer to 25–50 km in resolution. Investments in
tools like Google Earth Engine have facilitated access to these massive
global data sets and allow a user to determine the time period and
spatial and temporal scale of the available data for a given country or
community. At the same time, including the latitude and longitude of a
community or household has become routine in population surveys
related to health and development. On their own, each type of data –
population survey data and environmental data - is important and
widely used within specific disciplines. In combination, however, these

data can be used to help answer some of today's pressing questions
about the human impacts of climate change.

Without doubt, these widely (and freely) available georeferenced
data provide the necessary foundation for investigating questions re-
lated to health and development in a context of a changing climate. This
development is crucial given concerns over climate change and extreme
events and the increasing importance of understanding the ways that
context influences population health. However, the dramatically dif-
ferent spatial and temporal scales of the data can make straightforward
data merging very complicated and analysts must make choices that
affect how well the empirical analysis aligns with the research question.

To manage and analyze the vast array of data with varying temporal
and spatial scales, we argue that interdisciplinary population-environ-
ment scholars need to consider and identify the mechanisms that link
climate change characteristics to health outcomes when aggregating
and merging data. To maximize the opportunities provided by com-
bining these resources, we draw on theoretical and methodological
developments from multiple disciplines to propose a framework that
advances both conceptual and technical aspects of population-
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environment research. This framework, which can be modified to fit the
specific research question and data of interest, can also be used to guide
data aggregation strategies which is especially important to consider
when working with daily environmental data and cross-section popu-
lation data. In other words, our framework can serve as a useful starting
point for interdisciplinary scholars asking questions like “how do I assess
the relationship between temperature and infant mortality?” We posit that
the answer to questions such as this is found in the framework that the
researcher uses to guide their research and we develop such a frame-
work here. Our proposed approach merges elements from concepts of
‘exposure-dose-response’ and exposure types from Public Health,
Geography's focus on spatial context and Sociology's life-course theory.

We discuss distinct processes through which the environment im-
pacts human health, either directly or indirectly1 (Grace, 2017; Victora
et al., 2008; Carleton and Hsiang, 2016), with attention to the unique
spatial and temporal footprints that correspond to different types of
impacts. To offer insight into mechanisms that are relevant for policy-
makers and that can be considered in both quantitative and qualitative
approaches, we argue that proper modeling of these linkages requires
careful analytical design, including alignment of measures and models
with the research question while accounting for the geographical and
temporal embeddedness of exposure and individuals’ experiences.

We demonstrate the utility of our interdisciplinary approach as
applied to maternal reproductive and child health (MRCH) research.
This growing literature is particularly characterized by vaguely or
broadly defined mechanistic links. Inconsistencies in quantitative re-
sults found in the literature may result from the differing strategies used
to operationalize environmental and contextual features when com-
bining climate, geospatial, and population health data. The remainder
of the paper proceeds as follows: we first discuss existing literature and
highlight commonalities and differences in approach as well as results,
we then explore the concept of exposure, highlight five distinct en-
vironmental exposure models that capture the most commonly theo-
rized stressors, and explain the need for a life course approach. Next, we
discuss the utility of an integrated approach of these concepts. Finally,
we graphically depict the inter-related framework with empirical ex-
amples relevant to MRCH research, where we allow the exposure
models to reflect either direct or indirect connections to environmental
context.

2. Different approaches yield different results

An ideal study can produce results capable of differentiating and
quantifying variability in MRCH outcomes that are separately attribu-
table to direct and indirect linkages at different key periods in the lives
of women and children. This is an important contribution because it
allows scientists to differentiate the causes and effects of different cli-
mate-health linkages and supports the development of mitigation po-
licies that address the specific processes leading to the adverse health
outcome among the neediest individuals (McMichael, 2013; Patz et al.
2014). Differences in available data, approach (including specifying the
mechanism under study), and interpretation of results has, however, led
to a rapidly growing body of scholarship with varying results and in-
terpretations (Amegah et al., 2016; McMichael et al., 2006; Phalkey
et al., 2015).

A common approach is for analysts to investigate environmental
effects on a single MRCH outcome and use the results as an indicator of
how environment impacts MRCH more broadly. Most research in-
vestigating environmental effects on a particular MRCH outcome has

typically focused on wealthy countries, but a growing body of literature
is using health survey data to investigate the ways that environmental
factors impact MRCH outcomes in the poorest countries in the world
(Watts et al., 2015). When studies focus on sub-Saharan Africa and
other developing regions, food insecurity or disease exposure are fre-
quently cited as the likely linkages between climate/weather and health
outcomes and heat stress is often identified as the direct linkage (for
example, Grace et al., 2012; de Sherbinin, 2011; Bakhtsiyarava et al.,
2018; Shively, 2017, McMichael, 2013). However, as noted in several
review articles, the strategies used to operationalize the climate vari-
ables vary dramatically (McMichael et al., 2006; Amegah et al., 2016).
Spatial and temporal aggregation are key requirements as the spatial
and temporal scale of the health survey data never exactly align with
the scales of the environmental data. Among the approaches used, some
analyses focus on monthly averages over the life of an individual, some
focus on climate extremes, and some focus on specific periods (the
growing season, for example) (see Grace et al., 2017, Watts et al.,
2015). Other approaches include incorporating the long-term mean,
standard deviation or flagging climate anomalies (Bashktiyarava et al.
2018; Brown et al., 2015; Kinyoki et al., 2016).

Some scholars justify why they adopted specific approaches to
temporal aggregation (for example, “we specifically focus on growing
season characteristics”), while others provide little insight into why
they aggregated the data in the ways that they did. Some focus on re-
cent events (a particular type of shock) while others consider average
conditions over a long or short period of time. In the reviews of recent
articles that consider the effects of environmental conditions on chil-
dren's health outcomes in poor countries, for example, distinct statis-
tical differences arise when comparing results from the cited empirical
research (Amegah et al., 2016; Phalkey et al., 2015). Monthly, weekly
or seasonal temperature conditions are used and rainfall means and
variability is used. Naturally, given the different approaches, results
differ in statistically significant ways and, at times, even indicate dif-
ferent magnitudes as well as direction of effects. In the same or similar
settings, different approaches indicate different relationships between
health outcomes and either rainfall or temperature (Amegah et al.,
2016; Phalkey et al., 2015). Decisions surrounding merging environ-
mental data to individual data are also not often clear, with analysts
seemingly making choices based on the best of what they have (e.g.,
regional or country level data, cross-sectional individual level data) or
based on commonly used approaches (see Grace et al., 2019). With fine
spatial scale environmental data becoming easier to access and use
researchers now have to carefully consider the appropriate spatial
scales to use as well.

Ultimately, these coarse or vaguely described approaches make it
difficult to determine the nature of the relationship and the underlying
driver of the health outcome associated with the climate or environ-
mental measures (Phalkey et al., 2015). Without clearer framing that
addresses the relevant spatial footprint within a given time period,
identifying the linkage between exposure timing and exposure type is a
challenge, despite the clear necessity of understanding the impact of the
timing of exposure (see Patz et al. 2014; Phalkey et al., 2015).

3. Foundational perspectives from public health and sociology

3.1. Exposure

In Epidemiology and Environmental Health Sciences, “exposure” is
understood as the interaction between intensity, frequency and dura-
tion (Thomas, 1988; Berry et al., 1979; see also Carleton and Hsiang,
2016). Identifying exposure requires mapping an individual's history in
terms of where (their location) they were and when (calendar timing)
they were there. Research questions that investigate changes in health
outcomes with attention to changes in exposure processes -where in-
tensity, frequency and duration are allowed to vary – may yield insight
into the linkages between exposure and adverse health. But this insight

1 Direct linkages, such as heat waves and drought, create biophysical stress
leading to adverse health outcomes (Huang et al., 2010; Kent et al., 2014, Grace
et al. 2015). Indirect linkages also cause adverse outcomes but operate through
more distal causes such as disease and inadequate nutrition (Grace et al. 2012;
Brown et al., 2014; Grace, 2017).
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may fall short of helping us develop useful and efficient interventions to
protect those at risk of exposure unless scholars and policymakers
specify and operationalize exposure in deliberate and consistent ways.
Considering variation in the three components (intensity, frequency,
and duration) alone would not allow us to identify and distinguish
between climate change, climate shock and weather variability, for
example. In other words, different types of climatic or weather-related
exposures require notably different modeling approaches and have
important implications for individual health outcomes and for policy-
or public health-relevant interventions. The exposure models in Fig. 1
demonstrate these differences (see also NRC 2012).

While this approach to exposure-modeling is foundational in
Environmental Health Sciences and Toxicology and used to guide in-
vestigations of health effects of chemical pollutants and cancer research
in particular, it is not widely known or applied in health geography or
in population-environment and spatial demography research.

The descriptions of the five different types follow. To aid in linking
these exposure models to population health outcomes, brief examples of
applications of direct and indirect linkages related to weather and cli-
mate are also provided within each description.

Type 1 – Continuous: The continuous pattern of exposure is useful
to describe a static climate or weather experience that could lead to
adverse health outcomes.

Examples: An example of direct linkages between population health
and environment is continually high temperatures. In places where the
temperature is always (or nearly always) above a temperature
threshold, possibly indicating heat stress, then this model could be

useful to compare over space or time how health outcomes relate to
long term exposures to high temperatures. In terms of indirect linkages,
we could consider malarious conditions. In communities where the
weather/climate are always (or nearly always) suited to the survival of
malaria causing parasites and vectors (as measured by temperature and
rainfall conditions, for example), this model of continuous exposure is
appropriate. A research design based on this exposure model would be
relevant for researchers interested in investigating the health outcomes
of individuals who live in warm/dry areas of a country versus those
who live in wet areas of a country using different linking mechanisms.
Certain weather-related events, such as flooding or drought, do not fit
into this exposure type because these events are defined by a strong
deviation from usual conditions.

Type 2 - Cyclic: The cyclic model of exposure describes repeated
events that individuals are able to anticipate.

Examples: In relation to weather and climate, seasonal patterns can
be referred to as cyclic. Direct linkages could then refer to “normal”
seasonal temperature shifts like elevated temperatures during the
summer hot season. While indirect linkages could refer to the typical
disease (malaria or influenza, for example) season in communities
where there is a clear beginning and ending to a disease season.
Researchers interested in investigating the seasonality of biological and
behavioral responses could base their research design on this model to
examine the specific effects of temperature, net of seasonal norms.

Type 3 - Intermittent: The intermittent model of exposure refers to
climate or weather events that occur irregularly but not necessarily
infrequently.

Fig. 1. Five distinct and comprehensive patterns of exposure. Note: The time scale can represent months or years (see Greenland, 1987 for more information on
exposure patterns).
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Examples: In terms of direct relation to climate or weather events,
we can consider a series of extremely cold (or hot) days during the
normal cold (or hot) season as an example of an intermittent exposure.
Extremes could be defined by either thresholds based on some biolo-
gical/physiological knowledge or in reference to long-term norms, de-
pending on the research focus. Indirect linkages could be used to in-
vestigate reduced agricultural production (in rainfed agricultural
communities) as a result of a highly variable or late starting rainy
season. Research focused on investigating the impacts of a seasonal
heat-wave or food insecurity would base their research design on this
exposure model.

Type 4 – Concentrated: The concentrated exposure pattern reflects
a major event or climate shock that impacts many communities and
may result in a recovery of extended duration.

Examples: A major drought, hurricane, fire or climate/weather re-
lated disease outbreak that results in major losses to agriculture, food
systems and shifts in human interaction could be considered as a con-
centrated event that has both direct and indirect linkages to climate or
weather. We consider these as cataclysmic events like the 1984/1985
drought in sub-Saharan Africa, the 2004 Indian Ocean earthquake and
tsunami, hurricane Katrina in 2005 in New Orleans, or the 2018
European heatwave. Immediate health effects are experienced by those
directly impacted by the event and health effects may be observed for
many years after.

Type 5 – Unanticipated: The unanticipated exposure pattern refers
to seemingly random and extreme events. In terms of weather and
climate exposures, we can consider these events as sequential local
“shocks”.

Examples: Rainfall extremes like flooding or even longer-term sea-
sonal events like virtually no rain during the rainy season for back to
back seasons, can be incorporated into population-environment ana-
lyses using the unanticipated pattern of exposure. Indirect measures of
random climate or weather events include flooding, crop disease or pest
infestation – all of which are dependent on climate and weather but
may occur seemingly at random and without any ability to predict (as
opposed to cyclic exposures). The direct and indirect health effects of
this exposure model may mirror those in types 3 and 4.

A perspective based on these exposure types incorporates the em-
beddedness of an experience. For example, the response to a major
flood - as measured from quantitative topographic and rainfall data -
will be very different in communities who have been routinely exposed
to floods and have developed resources to cope with flooding from
communities that are not routinely exposed to floods. However, the
possibility that too many major floods or floods that occur too close in
time can actually tax the community resources and cause the commu-
nity to suffer in new ways must also be considered. Repeat floods in a
community accustomed to floods can be modeled as either exposure
type 2, 3, or 5 – depending on the specific timing and intensity of the
flood.

These patterns of exposure are critical to consider when designing
the research strategy and when deriving indices of environmental
covariates to capture the complexity of the environmental factors of
interest. Identifying which pattern characterizes the research setting
and research goals allows analysts to make explicit, consistent, and
correct underlying assumptions on which the analysis is based.
Considering the exposure type also ensures that research questions and
measurement are aligned, which leads to greater precision and accu-
racy in estimates and clarity in results and interpretation.

3.2. Geographical context

It is important to consider spatial context to best understand and
model environmental norms and deviations. For example, specific types
of seasons vary according to local environmental conditions and the
resulting cultural and economic responses. In low income countries,
seasonal changes are associated with weather patterns but also with

food security. The Famine Early Warning System Network (FEWS NET)
has developed country-specific calendars that identify specific seasons
of relevance for early warning systems, like the hunger season (see
fews.net). While the general timing of the hunger season is consistent
year to year, within-year variability in rainfall can have major im-
plications for the length or the severity of the hunger season in a given
year and in a given community (see, for example, Eggen et al., 2019). In
high income countries, spatially varying seasonal patterns of influenza
or temperatures, for example, are also relevant and require considera-
tion when developing a research approach (Dorélien, 2019; Isen et al.,
2017; Wu et al., 2019). Considering exposure conditions with relation
to local or community environmental and social norms, histories, and
mitigation strategies is fundamental to developing place-based analyses
of exposure.

3.3. Life course theory

Exposure models provide guidance on how to differentiate between
exposure types, but they do not directly correspond to demographic or
health-related events. Life course theory provides a vital tool for ex-
plicitly identifying the exposure process of interest to the analyst.
Through considering each individual's unique life experiences with re-
gard to the exposure models, researchers can clearly specify the process
of interest to their study.

The life course is a concept widely used in Sociology, Demography
and Epidemiology, where age-differentiated experiences occur as a se-
quence of events. Life course theory embeds these sequences in a par-
ticular space and time (Elder, 1977, 1994). The development of in-
dividuals is shaped, constrained and fostered by the conditions that
surround them. Huinink and Kohli characterize the life course as a
“system of interdependent dynamics that unfolds over time” (Huinink
and Kohli, 2014: 1293). A fundamental idea in life course research is
that what has happened in the past is relevant to the present situation.
Circumstances experienced can be envisioned as having a ripple effect,
chain reaction or reverberations (Mitchell, 2003). In this way, an in-
dividual's health and well-being is influenced by present as well as past
conditions. This perspective therefore naturally encompasses geo-
graphical and sociohistorical influences on individual's behavior and
experiences.

If we know that past conditions are influential, we can keep history
in mind at the most basic level by assessing whether individuals lived
through a particular time period in a location where there was a par-
ticular exposure. This focus can be useful when analyzing topics as wide
ranging as the effect of an earthquake to the effect of experiencing the
death of a loved one. Individuals may have many shocks or influential
life experiences. The life course approach advocates accounting for
advantages and disadvantages of past circumstances that accumulate
over time. The social and economic disruption caused by an earthquake
at the macro level can be compounded by repeated events, just as the
individual loss accompanying deaths in the family.

Most specific to the life course approach is the emphasis on the
intersection of personal biographies and factors specific to a particular
place and time (Elder, 1985). This implies that when individuals are
exposed to certain influences is also relevant to consider. We might
think of this as the intersection of two clocks: an individual's time and
calendar time. Epidemiologists discuss this aspect in terms of critical or
sensitive periods (Kuh and Ben Shlomo, 2002, 2004), where a critical
period is the only length of time during which a circumstance has an
effect on individual's development or outcomes and a sensitive period is
when an effect is particularly strong. The outcomes related to exposure
during critical and sensitive periods may appear years after the ex-
posure. To use an earlier example, the death of a parent may have
particularly detrimental effects on life expectancy if this event occurred
when an individual was a young child (Rostila and Saarela, 2011).

Life course theory points to the necessity of mapping how absolute
and relative timing and exposure matters to an outcome. A complete
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accounting of exposure therefore includes both accumulation and re-
lative timing, which are regularly missing from population-environ-
ment research.

4. Using a life course approach to update and frame models of
environmental exposure

Integrating life course theory with the five distinct exposure pro-
cesses provides a cross-disciplinary organizing framework useful for
thinking about human-environment interaction that then supports the
specific demands of a given research question and available data.
Spatial and temporal variation are required for rigorous research on
population health and environment relationships, as demonstrated in
demographic and geographical research, but the spatial and temporal
scale will vary depending on the research goal. For example, a climate
shock as depicted in type 4 might be a flood that occurs at one point in
time with after effects felt in one community for several months and in
another, nearby community for a shorter time period. These processes
are therefore operationalized using place and time specific metrics
corresponding to the spatial or temporal scale of interest.

We synthesize and summarize a general approach to considering
each exposure type integrated with the life course. As relevant, we re-
late back to some of the current trends in population-environment re-
search that do not explicitly identify the exposure process of interest.

Type 1, Continuous: Instead of quantitatively measuring some de-
gree of deviation from the long-term climate norm without explicitly
stating the mechanism under investigation, clarify if the goal is to in-
vestigate health differences between those acclimated to certain climate
conditions versus other climate conditions. Acclimation should be de-
fined based on the specific period of interest in the life course: for ex-
ample, comparing those who were exposed to chronically high tem-
peratures during adolescence to those who were exposed to moderately
high and cool temperatures. Another way of considering the role of the
life course is to consider the events of an individuals' life that may help
or inhibit an individual's ability to cope or recover from an event.

Type 2, Cyclic: In regression analysis, calendar month fixed effects
or fixed effects for specific seasons (growing season, malaria season)
have been used to capture exposure to cyclic environmental factors.
Sometimes this approach is referred to as “adjusting for seasonality”
where the goal is to account for the variability in the outcome variable
taking into account the average response to a seasonal trend. With at-
tention to life course, normal seasonal conditions can be mapped onto
individual's lived experiences, age development and critical or sensitive
periods to help investigate the role of consistent, repeated, and antici-
pated exposures.

Type 3, Intermittent: An important distinction here from cyclic, is
that intermittent models represent a within-season analysis and so re-
quire fine-temporal scale detail. A seasonal/annual temperature or
rainfall average would likely not capture these finer scale variations. In
other words, we are not simply investigating effects of the hot season,
but a heat-wave during the hot season. Using this exposure model, it is
vital to consider the linking mechanism of interest to the outcome be-
cause the construction of the variable will change depending on if the
focus is about perceptions of vulnerability (the rainy season started late
so a household will store food in preparation for a potentially poor
harvest) versus experienced outcomes (a heat-wave during the hot
season), for example. Fine-temporal scale detail of individuals’ life
course stage also improves an analysis of intermittent exposure; being
able to locate a heat wave during a particular trimester, for instance,
will improve the precision of estimates in assessing how heat may be
related to pregnancy outcomes.

Type 4, Concentrated: Specific location of a weather or climate
“shock” on a fine temporal and spatial scale is also required for this
type. Incorporating the life course perspective requires consideration of
how the timing and sequencing of the event in the life of an individual
might have been related to other events. For example, if a climate shock

like a hurricane impacts conceptions the timing of the first birth may
also be impacted. Important to also consider are the ways that a climate
shock would impact conceptions: through a reduction in access to
contraception for some couples, through biological linkages related to
psychological stress that inhibit ovulation or through behavioral lin-
kages related to the frequency of sexual activity.

Different types of concentrated events may also occur at different
key periods in the life-course with impacts that vary based on previous
exposures to other extreme events. Individuals who have faced repeated
extreme events – a severe drought during pregnancy, followed by ex-
posure to an earthquake during early childhood, for example –may face
unique challenges that come with the compounding effect of exposure
to concentrated events. Each of these mechanisms will also have a
spatial component that must also be considered. Although analyses are
often aimed at understanding the effect of one factor, such as rainfall,
on an outcome, the combined effect of other distinct factors such as
natural disasters can be modeled and is important to consider to get a
full picture of maternal, reproductive and child health.

Type 5, Unanticipated: Unanticipated events require attention to the
local history and context and can be well incorporated into life course
studies because of the focus on the ways that unanticipated events
happen over time. For example, using the hurricane example from Type
4 above, an unanticipated and extreme hurricane may have long lasting
effects on contraceptive use because of major impacts on access to
health resources and contraception. Depending on the human health
linkage under investigation, the impacts of unanticipated events can
naturally work through either direct (psychological stress resulting
from repeated exposure to extreme unanticipated events) or indirect
(reduction in available household resources) ways and will impact
health outcomes differently, depending on the individual's unique ex-
periences and conditions.

It is also important to note that sociological perspectives suggest
that individual vulnerability and resilience is heavily impacted by in-
dividual-, household-, and community-level norms and resources (Spini
et al., 2017; VanLandingham, 2017; Fussell et al., 2010). In other
words, individual factors related to education, socio-economic status,
race, religion or ethnicity will also shape outcomes, even after con-
sidering the interaction between the environmental exposures and the
individual life course. Extreme weather events, like floods or droughts,
will also have different population and health impacts depending on the
demographic characteristics of a community and the social, historical,
economic and political conditions (Brown et al., 2015; Brown and Funk,
2008). The time it takes for a heat wave or drought, for example, to
induce a food system failure depends on community characteristics
related to climatic/seasonal norms, agricultural practice and broader
food system conditions (Niles and Mueller, 2016; Morton, 2007). In
terms of diseases like malaria, considering spatially varying measures of
endemicity are vital for determining the risks associated with malaria
exposure. It is therefore typical practice to approach this type of ana-
lysis with a focus on variation between-individuals versus within-in-
dividual and between-community versus within-community to account
for spatial variability in the relationship but also to investigate how
individual health outcomes vary within specific contexts (Grace et al.,
2016; Balk et al., 2005, de Sherbinin, 2011; Shively, 2017, Shively
et al., 2015).

5. Applications to MRCH research

Currently, the importance of environmental exposures for short-
term and later-term adverse health and economic outcomes is rapidly
gaining importance in policy and health research. Understanding the
ways these specific drivers impact MRCH outcomes is critical in light of
evidence that climate change will increase rainfall and temperature
variability and extremes across the planet, adversely affecting the
health of millions (Hertel, 2016). While research has uncovered large
effects on pregnancy and early life health outcomes of exposure to
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weather- or climate-related events, like heat waves or malaria, there
has been limited work examining the timing of exposures, the accu-
mulation of exposure, the impact of different exposure types/durations,
the reversibility of and sensitivity to exposures, and geographic dis-
parities in exposure with respect to pregnancy, birth, and early child-
hood outcomes. This research is limited in rich, poor and middle-in-
come countries alike because data on pregnancy outcomes and
exposure to climate events or climate characteristics is not consistently
collected. Poor women and children in poor countries may be parti-
cularly important to study both because of a high-level of dependence
on rainfed agricultural systems for their livelihoods and they may face a
double burden of climate change through exposure to both direct and
indirect pathways linking climate to health outcomes (see, for example,
Grace et al., 2017; Isen et al., 2017; Kudamatsu et al., 2012; Strand
et al., 2011; Basu et al., 2016).

For the purposes of illustrating the information described in the
previous section focused on updating existing approaches, while also
considering the conceptual framework as stated in the previous para-
graph, we develop Fig. 2. In Fig. 2 we conceptualize the temporal and
geographic linkages between climate and weather exposure and MRCH
health outcomes by using time-lines for women and children. Contained
within MRCH outcomes, such as birth weight, is both the reproductive
life course relative to the woman and early childhood life course events
relative to the long-term health and development of an infant or child.
Women of reproductive age experience many stages of the reproductive
life course that are potentially influenced by environmental exposure,
including pre-conception, conception, pregnancy, non-live births, live
births, and post-partum.

For example, the woman depicted in Fig. 2 experiences X years (or
months) before becoming pregnant. She is then pregnant until she

experiences a non-live birth (e.g., spontaneous, induced abortion or
stillbirth) or a live birth (low birth weight or healthy birth weight).
After a non-live or live birth, the woman transitions back to a pre-
conception status until experiencing menopause.

For child-centered analyses, children are born during a live birth,
are infants for one year (when they are particularly vulnerable to dis-
ease, food insecurity, and heat stress), breastfeed generally for up to 24
months, and then transition to childhood. The circumstances or con-
ditions relating to their mother's reproductive life course or factors
related to pregnancy and early infancy have the potential for long term
health and development impacts for the child as they age into adult-
hood (Isen et al., 2017; Wilde et al., 2017).

Referring back to the updated framework, we can establish the
mechanisms of focus to identify the climate exposures in different ways
with health outcomes reported in spatially referenced survey data (the
Demographic and Health Surveys (DHS), for example) to quantify lin-
kages. All surveyed women with retrospective reproductive life course
information and geospatial data associated with their place of residence
at the time of the event or over the period of time of interest, can be matched
to a graphic like the one above but that is specific to their own lived
experiences. The graphic is important because it illustrates the different
time frames associated with direct climate exposures like heatwaves or
droughts versus indirect climate exposures like food insecurity.

We can then consider the five types of exposure and the ways that
each exposure type impacts the pregnancy, the woman, or the fetus/
infant. Each exposure type may impact MRCH outcomes in different
ways and will relate to the standard conceptual framework employing
determinants related to biology, behavior, nutrition or socio-environ-
mental characteristics. An analyst may then sort out the population of
exposed women and/or infants (or pregnancies) that correspond to

Fig. 2. Temporal and geographic linkages between climate or weather exposures and MRCH outcomes. Note: The Mother and Child timelines depict events (con-
ception, non-live birth, live birth) and periods (pre-conception, trimesters of a pregnancy, first year of a child's life) during their life courses. The Direct Linkage
timeline depicts events (flood, hurricane, other extreme weather event) or periods (drought) that have direct impacts on MRCH outcomes. The Indirect Linkage
timeline depicts events or periods caused by direct linkages that have indirect impacts on MRCH outcomes. For example, Episode 1 on the Direct Linkage timeline is a
drought that then causes reduced food production in Episode 1 on the Indirect Linkage timeline. As evident in this example, the reduced food production appears to
make it difficult for the Mother to get adequate nutrition, causing fetal stress, and ultimately, a non-live birth event.

K. Grace, et al. Social Science & Medicine 250 (2020) 112857

6



different climate events of interest. For example, if there was a major
and unanticipated quick onset climate event (like a typhoon (Type 5)),
how would aspects of the standard conceptual framework be impacted
and can we consider these impacts with respect to an individual's cur-
rent reproductive life stage. Employing this approach facilitates in-
vestigations that differentiate between the impact of multiple exposures
on a single person or community and the geographic disparities in
MRCH outcomes according to one widespread shock.

Similarly, repeated events like a standard annual “hunger season”
resulting in a seasonal food shortage, may have direct impacts on
biology (impacting fecundity or fetal growth) that might impact the
short- and long-term reproductive outcomes of pregnant women or
their fetuses/infants. However, these health impacts will be conditioned
by past reproductive histories and past experiences coping and pre-
paring for anticipated events (Type 2). Two women may live in the
same community and face nearly identical climate conditions during a
given period of time, but their biological and behavioral responses may
differ widely depending on their personal reproductive life course stage
as well as their unique experiences coping with similar conditions over
their lifetime. In other words, some individuals may acculturate (bio-
logically) to specific conditions or develop strategies to ration food or
secure community support (behavioral). Explicitly merging the in-
dividual history of exposures with life course theory, and considerations
of the actual environmental event of interest organizes research ap-
proaches and mechanisms so that the scholarly and policy community
can better specify hypotheses and research outcomes.

In each of these exposure types, it is also important to consider the
potential impacts of migration on data collection and determining ex-
posure histories. While some smaller surveys include detailed migration
histories, the vast majority of large-scale health surveys include very
little information on where people have lived, despite the potential for
weather or climate events to displace individuals. In practice, surveys
may be collected in a community where an individual has spent very
little time and, without attention to length of time in the community,
result in exposure misclassification. While exposure misclassification is
likely to bias results towards the null (Jurek et al., 2005; Zeger et al.,
2000), the complex linkages between migration, climate, and health
must be addressed in the design of the analysis and be considered in the
interpretation of the results. For example, Demographic and Health
Surveys (DHS) have often included a question such as “How long have
you been living continuously in (NAME OF CURRENT CITY, TOWN OR
VILLAGE OF RESIDENCE)?” Best practice in sample selection would
then limit the individual exposures in the past to only those at the
current and known location. This consideration can result in selection
bias because the analysis then only includes those who have not moved
due to particularly negative exposures (such as conflict or drought).
Analysts can, however, assess how different the outcome patterns are
across individuals who have migrated to another area (length of time in
residence is shorter than others) and those who have not and draw
conclusions about the generalizability (e.g., Lindskog, 2016).

6. Conclusion

Interdisciplinary population-environment research is fraught with
challenges and inconsistencies in results. Merging data of different
types and with different spatial and temporal scales poses a range of
technical, conceptual, statistical, and disciplinary challenges. However,
because there are many potential insights to be gained from combining
different types of data, we believe that these are worthwhile efforts. To
support scholars developing interdisciplinary population-environment
research, we aimed to develop a framework that can be used to guide
foundational challenges related to data aggregation and data applica-
tion. A wide range of approaches are used to investigate quantitative
population health questions that incorporate climate or environmental
details. Often the authors provide limited detail on why they approach
the research in the way that they do, nor do they specify the underlying

mechanism that they are trying to identify. The result is a series of
related analyses and projects without clear interpretation. The purpose
of this paper was to first bring attention to the problem of the lack of
consistency in approaches to environment-population research. The
second aim of this project was to explicitly outline a framework for
moving related research forward that organizes exposures and climate
events into distinct categories and embeds them into the life course.

As with other scholars who have encouraged the development and
use of a theoretical framework to provide a common language and
approach to addressing contemporary and pressing public health issues
(Victora et al. 1997; Carleton and Hsiang, 2016), we argue that the
framework proposed here should guide the research from a project's
early development and can be used to support and inform data ag-
gregation approaches that are necessary when merging data with such
different characteristics. Research that pulls from multiple disciplines,
as population-environment research does, requires careful considera-
tion of mechanisms. Explicit and clear use of frameworks facilitates
access to this research across broad groups of academics (quantitative
and qualitative), policy makers and activist or community groups.
Clearly describing why and how a researcher approaches and models
the link between an environmental exposure and a health outcome will
facilitate development of mitigation policies at different scales.

Considering both the place and the individual in the place drama-
tically shifts the ways that we design research. Incorporating measures
of long-term temperature or rainfall norms is a relatively common ap-
proach to accounting for climate change or climate norms in a given
community, however, unless we consider (and engage with local
communities) the actual lived experiences of the people in the com-
munities – we could be inappropriately attributing individuals with
experiences and exposures. Linking exposure types and timing to the
reproductive life course in the ways that we have highlighted here al-
lows us to explore complex interrelationships between the environment
and health outcomes in new and innovative ways. Importantly, in
identifying the exact exposure process (one of the five exposure types),
the critical period of interest in the life course, and explicitly con-
sidering the mechanism (direct or indirect) that links the environmental
context to individual MRCH outcomes, this integrated approach can
help ensure that social science scholars and analysts are creating a
common ground in approaching human-environment research.
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